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Eukaryotic cells are capable of performing very complex information processing tasks, and can 
be thought of as a computational device capable of performing perception-action behavior.  This 
behavior takes the form of the cell extracting information from the local environment, integrating 
the information relative to the current internal state, and producing an action to enhance the cell’s 
fitness in the current environment.  To facilitate this sort of information processing the cell would 
need to work in a coordinated fashion requiring a long-range signaling mechanism that can 
integrate information from across the cell quickly.  Many short-range signaling mechanisms have 
been identified in the eukaryotic cell biology, but a long-range signaling mechanism has yet to be 
conclusively established.  However, evidence indicates that the cytoskeleton could fill this long-
range signaling role, specifically the microtubule network because of its organizational 
characteristics. 

To explore this proposed signaling medium a learning model is used that combines a biologically 
motivated growth simulation with an abstract signaling mechanism to create an adaptive 
signaling medium.  This signaling medium is molded by adaptive self-stabilization [1], which is 
essentially a feedback mechanism that translates network fitness into regulatory signals for 
modulating the growth dynamics.  Ultimately a goal of this work is to harness the model’s 
inherent oscillatory dynamics for controlling a biomimetic robot that captures the interdependent 
nature of the eukaryotic cell’s various components. 

The microtubule network is one of three components that make up the eukaryotic cell’s 
cytoskeleton, playing the role of gross structural support and organizer of intracellular organelles.  
What sets the microtubule network apart from the other cytoskeletal components is its unique 
organization, which makes the network especially useful for efficient transport of proteins 
throughout the cell interior and potentially providing an effective long-range signaling medium.  
Microtubule networks consist of three basic components: microtubules, the Microtubule 
Organizing Center (MTOC), and Microtubule-Associated Proteins (MAPs).  The microtubules 
themselves are large macromolecular tube-like structures composed of tubulin dimers that 
assemble by a growth mechanism called dynamic instability [2].  This growth mechanism 
produces a system where individual microtubules stochastically oscillate between assembly and 
disassembly, while the larger microtubule population maintains a stable net mass of assembled 
structure.  The MTOC is a protein matrix around the cell’s centrosome, which nucleates new 
microtubules while providing orientation to existing microtubules so that they radiate from the 
cell center to the outer cell periphery.  MAPs are a large family of proteins that are capable of 
binding to the microtubules and allow the network to generate cell specific functionality.  MAPs 
provide a variety of functions, including: stabilizing assembling microtubules, linking 
microtubules to other intracellular components, facilitating protein transport, and providing 
micro-muscle activity. 
 



Several researchers have implicated the cytoskeleton as a mechanism for long-range signaling in 
the cell, specifically the microtubule network, because of its regular organization that reaches 
from the cell center to the periphery.   Evidence for these interconnections have been shown to 
exist, whereby mechanical signals can be transmitted from the cell surface to the nucleus [3].   
These interconnections start with proteins called integrins in the outer (plasma) membrane that 
are bound to the underlying cytoskeletal substructure, which in turn connects to the nuclear 
structure and allows a tug on the integrins to be transmitted to the cell nucleus.  It was this 
interconnection and evidence for a long range signaling mechanism in the neuron that lead to the 
suggestion that the cytoskeleton, and specifically the microtubule network, is the neuron’s  
“micro-nervous system”.  This resulted in a variety proposed signaling models in the literature 
[4], the majority of which are based on a type of vibratory dynamic.  

Our learning model consists of three phases: growth, signal processing, and adaptive self-
stabilization.  During the growth phase, the microtubule network is allowed to develop in a three 
dimensional array of cubes that abstracts the intracellular environment and preserves the spatial 
arrangement found in the natural system (see Figure 3.1).  The developed network is then 
reinterpreted by the signal-processing phase, which treats individual microtubules as strings of 
discrete oscillators that are interlinked by bound MAPs capable of actively modulating the 
signaling effects.  Adaptive self-stabilization modifies the growth dynamics based on the fitness, 
which is derived from the network’s signal processing capability.  This fitness-based signal has 
the effect of stabilizing the microtubule network over time as the fitness value increases. 

The behavior of the learning model is to begin with no microtubule network structure, which 
provides zero fitness since there is no network to support an information transform.  Microtubule 
network structure will quickly begin to build up, although at this point the signaling pathways are 
incomplete and will provide a very low fitness.  At some point a critical amount of network 
structure will be generated to support an effective set of signaling pathways, which will increase 
fitness and lead to a progressively more stable structure.   This development of effective 
signaling pathways can be seen in experimental results presented in Figure 3.2. 

The task given to the model for these results was to find the center point in a two-dimensional 
array from a random position.  The learning model does this by taking the current location as 
input, integrating the information relative the current network dynamics, and producing an offset 
relative to the current array position for the next position.  The process is then repeated with the 
new array position without resetting the internal network dynamics, providing a rough 
perception-action framework for the model to function within.  In Figure 3.2 each rectangle 
shows the learning model’s ability to perform the task for eight randomly generated points, with 
each arrow indicating direction and distance offset.  At time points 10 through 54, little 
movement occurs beyond the initial random location generated and is due to the initial lack of 
developed network structure.  However, as time progresses structure begins to develop that 
allows the model to begin producing useful effects and will eventually stabilize into more useful 
configurations (see time periods 211 and 562).  It should be noted that the problem was partially 
encoded into the MAP functionality, allowing the learning model to achieve a “sense of 
direction” in the 2-dimensional array that can then be regulated by the correct placement of MAP 
on the microtubule network.   Eventually this encoding will be replaced by an evolutionary 



mechanism that evolves different MAPs types, eliminating the need for this kind of direct control 
over the model. 

The learning model’s signaling mechanism treats each microtubule as a string of simple discrete 
oscillators with neighbor-neighbor interactions.  The reason for this representation is that a 
variety of possible vibratory dynamics can be represented in an abstract way; a second advantage 
of this implementation is that it provides a computationally simple simulation.  MAPs are used in 
the signal processing mechanism to introduce active effects to the otherwise passive microtubule 
substrate, much the way MAPs interact with microtubules in the natural system.  In the case of 
the learning model, MAPs: introduce signals into the microtubule network, exchange signals 
between neighboring microtubules, and extracts signals from the structure.  As a result of this 
microtubule-MAP interaction MAPs produce a periodic triggering activity that mirrors the 
underlying microtubule network dynamics, producing behavior that is reminiscent of a spike 
train generated by a neuronal action potential. 

To expand upon this simulation of information processing in the eukaryotic cell, the learning 
model will ultimately will be integrated with a biomimetic robot that abstracts eukaryotic cell 
functionality.  The robot, called biot, consists of a sequence of twelve segments that are 
interconnected with both local and distant neighbor segments in a non-regular fashion to promote 
context sensitive interactions between the different segments.  As a result of these complex 
interactions the current shape of biot cannot be calculated based on previous movements, instead 
a set of optical sensors are positioned throughout the device to provide a general feedback 
mechanism about the robot’s shape.  The resulting interactions between each segment produces 
movements similar to a biological system that when combined with the general feedback 
mechanism provides a very natural representation of a biological system. 

The month spent at NASA-Ames Research Center focused on integrating the microtubule based 
learning model within the context of this perception-action framework of the eukaryotic cell.  
Additional work also examined various options of how to utilize the oscillatory dynamics 
inherent to the learning model so as to be an effective control mechanism for the biomimetic 
robot.  This research avenue was followed for two reasons: first, the learning model functions 
well in a perception-action framework that would be required for manipulating the complex 
interactions needed to control the biot; second, the adaptive nature of the learning model would 
allow the biot to respond to changes in the local environment like encountering new terrain 
features.  Additionally, by combining this learning model with the biot it would provide an 
abstraction for the exploration of the eukaryotic cell and how it coordinates the diverse 
intracellular activities to produce clear cohesive actions towards a goal that the cell perceives as 
necessary, usually resulting in a higher fitness and thus a better chance for continued survival. 
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Figure 3.1- an example of the first 10 time steps of a developing microtubule population.  Single 
black cubes represent new microtubules, while older microtubules are a black cube paired with a 
white rectangular cube.  At time 0 the simulated cellspace is empty, at time 1 14 new 
microtubules are created, at time 2 10 of the 14 microtubules grow one array location, and so on. 
 

Time 0 

 

Time 1 

 
Time 2 

 

Time 3 

 
Time 4 

 

Time 5 

 
Time 6 

 

Time 7 

 
Time 8 

 

Time 9 

 



Figure 3.2 – experimental results where the learning model was given a random position in the 2-
dimensional array and required to find the middle position.  A black cross indicates the center 
and each start position is given as a black dot.  The model’s movement is given as a sequence of 
blue lines with an arrow to indicate direction and distanced moved.  Fitness is determined based 
on the distance to the center, relative to the starting distance. 

Time 10 

 

Time 20 

 

Time 54 

 
Time 136 Time 137 Time 151 

Time 159 

 

Time 161 

 

Time 211 

 
Time 562 

 

   


